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An Exponential-Gamma Mixture Model
for Extreme Santa Ana Winds

Gregory P. Bopp1∗ and Benjamin A. Shaby1

Summary: We analyze the behavior of extreme winds occurring in Southern California during the Santa

Ana wind season using a latent mixture model. This mixture representation is formulated as a hierarchical

Bayesian model and fit using Markov chain Monte Carlo. The two-stage model results in generalized

Pareto margins for exceedances and generates temporal dependence through a latent Markov process. This

construction induces asymptotic independence in the response while allowing for dependence at extreme,

but sub-asymptotic, levels. We compare this model with a frequentist analogue where inference is performed

via maximum pairwise likelihood. We use interval censoring to account for data quantization, and estimate

the extremal index and probabilities of multi-day occurrences of extreme Santa Ana winds over a range of

high thresholds.

Keywords: Extreme value theory; Generalized Pareto distribution; Bayesian hierarchical model;

Asymptotic independence; Santa Ana winds.

1. INTRODUCTION

We examine extreme winds occurring in Southern California during the Santa Ana wind

season using a stochastic process model with sub-asymptotic extremal dependence in

time and generalized Pareto (GPD) margins. This model is constructed as a Gamma

process mixture of independent exponential random variables. Because it is easily expressed

conditionally as a hierarchical model, Bayesian estimation is a natural choice. The same
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modeling framework recently appeared in Bortot and Gaetan (2014) and Bortot and

Gaetan (2016), who, in contrast, estimated model parameters with composite likelihoods

using bivariate densities of pairs of observations. Because our implementation is fully

Bayesian, it is able to make use of the full data likelihood, constructed hierarchically.

Modeling the dependence characteristics among extremes is often of interest in

environmental applications. Rather than assume a Markov structure for the extremes

directly, here we will assume exceedances of a high threshold are conditionally independent

given an unobserved Markov process. More generally, the latent component may be any

stochastic process with Gamma margins, with different choices leading to different extremal

dependence characteristics in the resulting mixture process. In addition to describing

dependence, the proposed model also ensures that threshold exceedances marginally follow

a generalized Pareto limiting distribution.

The dry, high-speed Santa Ana winds occur in Southern California during autumn

through spring (Raphael, 2003). They are caused by dry desert air masses in the high-

altitude, interior Great Basin region that warm adiabatically as they sink to lower altitudes,

and accelerate downslope as they pass through Sierra Nevada Mountain corridors out to the

Pacific coast (Hughes and Hall, 2010). One reason they are of interest is their tendency to

cause and rapidly spread wildfires near heavily populated urban areas. These high-speed

winds can knock down utility poles, causing electrical arcing that can ignite wildfires.

This threat has been exacerbated by the watershed management and the fire suppression

strategies of the 20th-century, making Southern California one of the most susceptible

environments to wildfires in the world (Westerling et al., 2004). Santa Ana winds have a

compound effect: in addition to increasing ignition risk, they amplify the already high

endemic spread potential that is a result of Southern California’s dry, Mediterranean

climate and ample fuel sources consisting of low-lying shrubs and grasses. These factors

make fires during the Santa Ana wind season especially difficult to contain. In contrast
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to California’s non-Santa Ana fires, fires during the Santa Ana season consume more of

their final burn area faster (Jin et al., 2015), cause appreciable property damage, and

tend to result in more civilian fatalities. Between 1990 and 2009, fires during Santa Ana

wind seasons were responsible for an estimated $3.1 billion in losses (Jin et al., 2015).

Because of the potential these winds have for igniting and spreading fires, modeling the

dependence of these extreme winds may be of interest for utility pole design, fire safety

regulation (Clopton, 2016), as well as understanding Santa Ana fire diffusion. To address

the question of temporal dependence, we develop a model to predict the probability of

consecutive multi-day extreme winds.

Two common objectives in extreme value analysis of time series data can be broadly

categorized as follows: (1) to understand marginal tail distribution characteristics and (2)

to describe the dependence structure among extremes. If one is willing to forgo inference on

the dependence in the joint tail distribution, several methods are available for accounting

for its effect on marginal quantities (Fawcett and Walshaw, 2007, e.g.), or removing it so

that models for independent data can be applied. Alternatively, as we do in this paper,

one may attempt to model the dependence explicitly.

For modeling peaks-over-threshold data, Davison and Smith (1990) and Coles et al.

(1999) propose a runs method for declustering dependent data, in which only maxima

of exceedances within a cluster are retained for inference. Discarding observations is

generally an inefficient use of data, however. The method of Ferro and Segers (2003)

provides an alternative that incorporates additional information about inter-exceedance

times to decluster data. One drawback of these methods is that one typically needs

to fix a declustering parameter, which can sometimes have a significant impact on the

resulting inference. To minimize the effect of choosing a declustering parameter, Fawcett

and Walshaw (2008) develop a Bayesian adaptation of the intervals declustering method

that incorporates uncertainty in this choice.
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Several methods have been proposed that explicitly model tail dependence, rather than

remove it. For example, Smith et al. (1997) construct a class of first-order Markov models

for successive observations using bivariate GPDs. Similarly, Shaby et al. (2016) develop

a Markov switching model with two states, one for exceedances and one for the bulk of

the data, with non-exceedances modeled by a Gaussian AR(1) process and exceedances by

a bivariate parametric GPD family. Partitioning the data this way may reflect a belief

that there is a fundamental difference in the data generating process for the bulk of

the observations and the extremes. Another much broader class of models for extremal

dependence can be constructed using copulas (Nelsen, 2006), which have a long history in

extreme value analysis (Salvadori, 2007). The justification for copula models comes from

Sklar’s theorem, which states that any distribution can be decomposed into its marginal

distribution and dependence structure components. A relevant example is given by Reich

et al. (2014), who construct a Bayesian max-stable copula model with dependent random

effects. In Section 3, we will compare the fit of their Markov hierarchical max-stable model

to a Gaussian ARMA copula model and the latent mixture model presented here on the

Santa Ana winds data.

We develop a Bayesian two-stage mixture model for exceedances over a high threshold

and apply it to a dataset of daily maximum wind gusts in Southern California. The model is

motivated by a hierarchical representation of the GPD as a gamma mixture of exponential

distributions (Reiss and Thomas, 2007). Extremal dependence is induced through a two-

stage model: (1) a conditionally independent exponential observation model and (2) a

latent stochastic process model in time with Gamma margins that controls the dependence.

The GPD representation as a mixture of exponential distributions applies only when the

shape parameter of the GPD is positive. However, this restriction can be removed by

including a marginal transformation of the data as part of the hierarchical model, which

effectively uses the Gamma process mixture model as a copula. For different choices of the
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latent Gamma process, either asymptotic dependence or independence is possible, with a

wide range of dependence types at sub-asymptotic levels.

Choosing a Markov chain structure for the latent process, together with the conditional

independence in the observation model, makes inference for this model computationally

tractable. Bortot and Gaetan (2016) use a pairwise likelihood (PL) approach for inference

by splitting the complete log likelihood into bivariate blocks and summing these blocks to

form a composite likelihood objective function. In contrast, we perform inference based on

the full likelihood, taking advantage of the hierarchical structure to construct our Markov

chain Monte Carlo (MCMC) sampler.

2. BAYESIAN LATENT TEMPORAL MODEL FOR EXTREMES

In this section we present a Bayesian hierarchical model for threshold exceedance time

series, where the extremal dependence is modeled through a first-order latent Markov

process with Gamma margins. This hierarchical approach allows us to account for serial tail

dependence while maintaining GPD margins for the exceedances. The model is motivated

by the following representation for the GPD: for ξ > 0, the distribution function G(y;σ, ξ)

can be expressed as a mixture of exponential distribution functions, H(y;λ), with respect

to a Gamma(1/ξ, σ/ξ) mixing density, with shape 1/ξ and rate σ/ξ (Reiss and Thomas,

2007). In particular, if G(y;σ, ξ) is the distribution function of a GPD with scale σ and

shape ξ,

G(y;σ, ξ) = 1− (1 +
ξy

σ
)−1/ξ , for y > 0 and 1 +

ξy

σ
> 0.

the representation theorem says that

G(y;σ, ξ) =

∫ ∞
0

H(y;λ)fλ(λ; 1/ξ, σ/ξ)dλ (1)
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for exponential distribution function H(y;λ) = 1− e−λy, y > 0 and Gamma density

fλ(λ; 1/ξ, σ/ξ) = λ1/ξ−1(σ/ξ)1/ξe−λσ/ξ/Γ(1/ξ). This theorem shows that if

Y |Λ ∼ Exp(Λ)

Λ|σ, ξ ∼ Gamma(1/ξ, σ/ξ)

then by Equation 1, marginally Y ∼ GPD(σ, ξ).

Because the parameters of the Gamma distribution are positive, this mixture

representation requires that ξ > 0, which corresponds to the heavy-tailed case of the

GPD. In many environmental applications, however, the distribution of the data may not

possess heavy-tails. To relax this heavy-tail constraint, the probability integral transform

can be used to put Y on a scale with arbitrary shape parameter. For Y ∼ GPD(σ, ξ),

σ > 0, ξ > 0, applying the transformation Y ′ = G−1(G(Y ;σ, ξ);σ′, ξ′), σ′ > 0, ξ′ ∈ R, gives

Y ′ ∼ GPD(σ′, ξ′) with unconstrained shape parameter.

Now, let {Xt, t ≥ 1} be a stationary discrete time random process. Take u ∈ R to

be a high threshold, and define a threshold-censored sequence of exceedances of u by

Y ′t = max(0, Xt − u). Under relatively weak regularity conditions on the distribution of

{Xt, t ≥ 1}, each Y ′t |Xt > u is approximately generalized Pareto distributed (Leadbetter

et al., 1983). Since we want the tail to speak for itself, rather than allowing inference to

be contaminated by the bulk of the distribution, we model the threshold-censored terms

separately from the exceedances. To account for threshold censoring, non-exceedances are

modeled by their non-exceedance probability, and exceedances are modeled as GPD.

dF (y;σ′, ξ′) =


p, for y = 0

(1− p)dG(y;σ′, ξ′) for y > 0
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where p = P (Xt ≤ 0) is the probability of non-exceedance, and dG(y;σ′, ξ′) is the density

of a GPD with scale σ′ and shape ξ′.

An ideal model accounts for the temporal dependence among {Y ′t , t ≥ 1} while

maintaining that marginally each Y ′t |Xt > u follows a GPD. To achieve this end, we set

Yt = c(Y ′t )1{Xt>u} for

c(y) = G−1(G(y;σ′, ξ′); 1, 1) = (κ+ 1)

[(
1 +

yξ′

σ′

)1/ξ′

− 1

]
, σ′ > 0, ξ′ ∈ R

and use the mixture representation presented above to construct a model that accounts for

temporal dependence where each Yt is marginally distributed GPD(1,1). The marginally

transformed exceedances {Yt, t ≥ 1} are assumed to be conditionally independent and

exponentially distributed given a latent process {Λt, t ≥ 1}

Yt|Λt, Xt > u ∼ Exp(Λt).

Following Bortot and Gaetan (2014), we model the probability of exceedance as

P (Xt > u|Λt) = exp(−κΛt).

Finally, the latent process {Λt, t ≥ 1} is taken to be a stochastic process with Gamma(1, 1)

margins. We model the latent stage using a stationary, first-order Markov process (Warren,

1992), which we will refer to as the Warren process. In its general form, the Warren

processes is defined as

Λ1 ∼ Gamma (1/ξ, σ/ξ)

Πt|Λt−1 ∼ Poisson

(
Λt−1

σρ

ξ(1− ρ)

)
, 0 ≤ ρ < 1

Λt|Πt ∼ Gamma

(
Πt +

1

ξ
,

σ

ξ(1− ρ)

)
.
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Here, however, we take σ = ξ = 1, which gives the desired Gamma(1, 1) margins for

each Λt, while allowing for dependence among the {Λt, t ≥ 1}. The dependence among

exceedances is controlled through ρ, with higher values of ρ corresponding to stronger

levels of dependence. For all fixed lags k, this process has autocorrelation function

corr(Λt,Λt+k) = ρ|k|.

A common measure of dependence in extremes is the tail dependence parameter, which

describes the conditional probability that one random variable is extreme when the other is

extreme. For two random variables Z1 and Z2 with distribution functions FZ1
and FZ2

, the

tail dependence parameter at level u is defined by χ(u) = P (Z1 > F−1
Z1

(u)|Z2 > F−1
Z2

(u)).

The tail dependence parameter is defined by χ = lim
u→1

χ(u). Two random variables are said

to be asymptotically independent when χ = 0 and dependent otherwise. Although the

latent mixture model leads to dependence among the {Y ′t , t ≥ 1} for all ρ 6= 0 at all finite

levels, the Warren process induces asymptotic independence in the response, an assumption

supported by exploratory analysis of the Santa Ana wind data (Figure 1). Different models

for {Λt, t ≥ 1} lead to different extremal dependence characteristics, including asymptotic

dependence (Bortot and Gaetan, 2014).

Defining the latent mixture model on the transformed {Yt, t ≥ 1} allows the data,

{Y ′t , t ≥ 1}, to be marginally GPD(σ′, ξ′), σ′ > 0, ξ′ ∈ R with unconstrained tail parameter.

This transformation also has the benefit of separating the parameters that control marginal

distribution dependence characteristics. This separation makes it possible to more cleanly

further model the parameters as functions of covariates.

If we let Zt be an indicator for whether the tth observation is a threshold exceedance,

Zt = 1{Xt>u} and denote the parameter vector by θ = (σ′, ξ′, ρ, κ), the full data likelihood

for this model is
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fy′,z(y
′
1:n, z1:n|θ) =

∫ ( n∏
t=1

[λt exp {−λtc(y′t)}
d

dy′t
c(y′t)]

zt

n∏
t=1

[exp{−κλt}]zt[1− exp{−κλt}]1−zt

· fλ(λ1:n; ρ)

)
dλ1 . . . dλn

where fλ(λ1:n; ρ) is the joint density of Λ1, . . . ,Λn, and

d

dy′t
c(y′t) =

κ+ 1

σ′

(
1 +

y′tξ
′

σ′

)1/ξ′−1

.

To complete the model, we specify weakly informative normal and truncated normal priors

for ξ′, σ′ and κ, and a Unif(0,1) prior for ρ. Hereafter we refer to the Bayesian latent mixture

model as MBLM and the PL one proposed by Bortot and Gaetan (2016) as MPLM .

2.1. Data Quantization

Data quantization, or rounding, are common in environmental data and can have an effect

on tail inference. Deidda and Puliga (2009) investigated the performance of several GPD

scale and shape estimators under varying degrees of data quantization and demonstrated

increased bias for pronounced cases. One way to account for data quantization is to

model threshold exceedances as interval censored realizations of continuous GPD random

variables. The MBLM can easily be modified to incorporate measurement uncertainty

caused by data quantization. Due to the hierarchical construction, only the form of the

observation model changes, wherein the exponential density is replaced by an integral over

the censoring interval.

Suppose that {W ′
t , t ≥ 1} is an interval censored version of {Y ′t , t ≥ 1} such that the

censoring occurs in evenly spaced intervals of 2ε > 0, where each interval centered at values
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on the support of the distribution of W ′
t , {2ε, 4ε, . . .}. Then denoting

w+
t = G−1(G(w′t + ε;σ′, ξ′); 1, 1) and w−t = G−1(G(w′t − ε;σ′, ξ′); 1, 1), for w′t > 0

the conditional observation model becomes

P (W ′
t = w′t|Xt > u+ ε,Λt) = P (w′t − ε < Y ′t ≤ w′t + ε|Xt > u+ ε,Λt)

= P (w−t < Yt ≤ w+
t |Xt > u+ ε,Λt)

= H(w+
t |Λt)−H(w−t |Λt)

= exp{−Λtw
−
t } − exp{−Λtw

+
t }

where H is an exponential distribution function with rate λt. Additionally, censoring at

the threshold is accounted for by modeling the conditional exceedance probability as

P (Xt > u+ ε|Λt) = exp(−κΛt).

In this case setting Zt = 1{Xt>u+ε}, the corresponding full data likelihood is

fw′,z(w
′
1:n, z1:n|θ) =

∫ ( n∏
t=1

[exp{−λtw−t } − exp{−λtw+
t }]zt

n∏
t=1

[exp{−κλt}]zt [1− exp{−κλt}]1−zt

· fλ(λ1:n; ρ)

)
dλ1 . . . dλn (2)

The PL approach to inference on the frequentist interpretation of this model (i.e. up to

the exclusion of the priors and interpretation of θ, see Bortot and Gaetan (2016)) can

also easily be modified to account for data quantization. Rather than integrating over the

latent parameters, the PL approach replaces the full likelihood given in Equation 2 by a

PL, which is simpler to evaluate and still captures some of the dependence characteristics

of the model. Using the same interval censoring approach, the maximum PL estimator is
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found by maximizing

PLIC(θ) =

n−1∏
i=1

min(i+∆,n)∏
j=i+1

f(w̃i, w̃j; θ)

where f(w̃i, w̃j; θ) is the joint density of (W ′
i , Zi,W

′
j, Zj) and ∆ is a tuning parameter for

the maximum lag between observations. These pairwise joint densities can be expressed

in terms of Laplace transforms of {Λt, t ≥ 1} (see Appendix A for details). The interval

censored Bayesian and PL models are hereafter referred to as MBLMC and MPLMC

respectively.

2.2. A Comparison of Pairwise Likelihood and Bayesian Estimators

In this section we assess the performance of Bayesian posterior mean and maximum PL

estimators for the continuous observation models, MBLM and MPLM . For details on how

the PL estimator and confidence intervals are computed, see Bortot and Gaetan (2014) and

Bortot and Gaetan (2016). The Bayesian model is fit using Markov chain Monte Carlo,

which has the advantage of using the full data likelihood but comes with a substantial

computational burden, whereas the maximum PL is quick to compute but sacrifices

information about the parameters that is not explained by pairs of observations. For this

comparison, 1,000 datasets are simulated according to the continuous model described in

Section 2 with n = 1, 000 observations and parameter settings σ′ = 2.5, ξ′ = −0.15, ρ = 0.7,

and κ = 9 (MCMC details described in Appendix B). The PL is calculated by taking the

product of the joint density of pairs of observations up to a maximum lag of 4 time

steps apart. For the Bayesian model, the following priors were used σ′ ∼ TN+(0, 103), ξ′ ∼

N(0, 1), ρ ∼ Unif(0, 1), and κ ∼ TN+(0, 103) , where TN+(µ, τ) is a truncated normal

distribution with location µ ∈ R, scale τ > 0, and support R+. Bayesian 95% HPD credible

intervals and PL 95% confidence intervals are compared based on their coverage and
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interval scores (Gneiting and Raftery, 2007) and parameter estimates are compared based

on their bias and RMSE (Table 1). An interval score is a proper scoring rule that rewards

narrower intervals but penalizes those that miss the true parameter.

[Table 1 about here.]

The simulation shows comparable performance between the two methods in terms of bias

and RMSE. However, the coverages of the Bayesian HPD credible intervals are consistently

closer to the nominal level than the PL confidence intervals, and the interval scores are

smaller for the Bayesian credible intervals than the PL confidence intervals. If one is only

concerned with accurate point estimates, the additional computational burden associated

with MCMC may not be justifiable. However, for uncertainty quantification, the Bayesian

approach gives more accurately calibrated intervals.

3. APPLICATION TO SANTA ANA WINDS DATA

The data for this application come from the Hadley Center (available at

http://www.metoffice.gov.uk/hadobs/hadisd/index.html). The observations consist of daily

maximum wind speeds at the March Air Reserve Base weather station in Perris, California

during the years 1974-2014, which have been rounded to the nearest 1/2 m/sec. Because

the Santa Ana winds tend to prevail between October and April, we restrict our analysis

to this period. Furthermore, since consecutive Santa Ana seasons are separated by 5

months, we assume seasons to be independent. To illustrate the pattern of daily maximum

wind speeds, a subset of the data from October, 2008 through April, 2012 are plotted

in Figure 1. Although the bulk of the data show clear seasonal patterns, with the most

day-to-day variation in wind speed occurring during the winter, the plotted time series

supports the assumption of stationarity for exceedances during the Santa Ana seasons,

which we make for the remainder of the paper. Because the latent Warren process model
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induces asymptotic independence, we check empirical estimates of the lag-1 tail dependence

parameter but here as a function of increasing thresholds u since the data are assumed

to have common margins (i.e. χ1(u) = P (Xt+1 > u|Xt > u)). As the empirical estimate of

χ1(u) appears to be decreasing with higher wind speeds (Figure 1), plausibly converging

towards 0, the assumption of asymptotic independence appears to be reasonable. The

step-like behavior of the empirical estimate is due to the quantization of recorded wind

speeds.

[Figure 1 about here.]

For this study we compare Bayesian and PL models with and without interval censoring

to account for the possible effect of data quantization. Since the data are rounded to the

nearest 1/2 m/sec, censoring intervals are taken to be centered at the recorded observation

and of length 1/2. Each model is fit over a range of high thresholds (0.9, 0.925, and

0.95 empirical quantiles) to assess parameter stability and the plausibility of the GPD

assumption. Higher thresholds beyond the 0.95 quantile are not considered so as to preserve

enough data to inform the latent process. To fit MBLM and MBLMC , we use variable-at-

a-time Metropolis-Hastings algorithms with adaptively chosen proposal variances (Shaby

and Wells, 2010) (MCMC details described in Appendix B). The following priors were

specified for the remaining parameters: σ′ ∼ TN+(0, 103), ξ′ ∼ N(0, 1), and ρ ∼ Unif(0, 1).

To improve the mixing of the sampler, κ is fixed at its empirical quantity, which is a

function of the marginal probability of exceedance

1− p = P (Xt > u) = E[e−κΛt] = 1/(1 + κ)

For example, in the case of p̂ = 0.9, we fix κ̂ = (1/(1− p̂)− 1) = 9 (replace P (Xt > u) by

P (Xt > u+ ε) for the interval censored model).

Estimates for the PL models are found by maximizing the objective function consisting of
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all pairwise densities for pairs y′t and y′t′ (or w′t and w′t′) within |t− t′| ≤ ∆ = 4 as described

in Bortot and Gaetan (2016). Other choices of this tuning parameter give essentially

the same results. Confidence intervals are constructed using the Godambe information

approximation also described therein. For the sake of comparison with the Bayesian models,

κ is also fixed at its empirical quantity.

Bayesian posterior means and 95% HPD credible intervals, and maximum PL estimates

and 95% confidence intervals are reported in Table 2. The parameter estimates are

consistent between Bayesian and PL models. Moreover, data quantization does not appear

to have a strong affect on inference in this case, as parameter estimates for interval censored

and continuous models are very similar. Since the fits are relatively stable across thresholds,

the MBLM and MPLM fit using the 0.9 empirical quantile threshold (7.5 m/sec) are used

for the remainder of the analysis. For all fits the shape parameter estimate is less than

zero, corresponding to the light tailed regime of the GPD family. The observed light tailed

behavior agrees with an extreme wind analysis performed by Fawcett and Walshaw (2006)

over a region of central and northern England. The estimated latent process autocorrelation

parameter ρ̂ is fairly high, indicating fairly strong dependence among successive λt and,

which we will see, corresponds to moderate dependence among extremes at sub-asymptotic

levels.

[Table 2 about here.]

To visualize the relationship between the latent process and the wind exceedances,

posterior means and 95% credible intervals of c−1(1/λt) during the 2011-2012 Santa

Ana season, overlaid with the observed exceedances, are plotted in Figure 2. Since 1/λt

correspond to the conditional means of Yt|λt, applying this marginal transformation puts

the latent component on the same scale as the observations {Y ′t , t ≥ 1}. As expected,

the λt corresponding to long periods without exceedances exhibit greater variation than

those near exceedances, and spikes in the transformed latent mean correspond to large
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exceedances.

[Figure 2 about here.]

To assess the marginal fit of MBLM , we examine a QQ-plot for exceedances (Figure 3).

The points lie very close to the line of unit slope, indicating a very good marginal fit to

the data. We also examine the dependence characteristics of the Bayesian and PL fits and

compare them to two other Bayesian models for extremal time series data: (1) the Markov

hierarchical max-stable model of Reich et al. (2014), hereafter referred to as MHMS, which

is similar in that it also uses a mixture representation and also incorporates marginal

transformations, but qualitatively different in that it produces asymptotic dependence,

and (2) a Bayesian Gaussian ARMA(1,1) copula model, hereafter referred to as MGAC ,

formulated as follows:

Let {Xt, t ≥ 1} be a stationary discrete time random process. Take u ∈ R to be a

high threshold, and define a threshold-censored sequence of exceedances of u by Y ′t =

max(0, Xt − u). When Xt > u set Yt = Φ−1(G(Y ′t ;σ
′, ξ′)), where Φ is the quantile function

of a standard normal distribution, model {Yt, t ≥ 1} as an ARMA(1,1) process with N(0, 1)

innovations, so that the Yt are latent when Xt ≤ u. That is, for t = 0, ±1, ±2, . . .

Yt = φYt−1 + εt + θεt−1, φ 6= 0, θ 6= 0

εt
iid∼ N(0, 1)

Finally, a Unif(0,1) is placed on p = P (Xt > u), the probability of exceeding the threshold

u, and σ′ ∼ TN+(0, 103), ξ′ ∼ N(0, 1) priors are used for the marginal GPD scale and shape

parameters. It is physically justifiable that winds have positive serial autocorrelation.

To ensure that the ARMA(1,1) model is stationary (|φ| < 1), invertible (|θ| < 1), and

has non-negative lag-1 autocorrelation (θ ≤ φ), the following prior is used for φ and θ:

π(φ, θ) = (1/2)1{−1<θ≤φ<1} (Shumway and Stoffer, 2017). Unlike the hierarchical max-stable
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model, the Gaussian ARMA copula model induces asymptotic independence among the

{Y ′t , t ≥ 1} (Sibuya, 1960).

[Figure 3 about here.]

For a graphical assessment of model fit, we compare the concordance between empirical

and estimates of dependence measures. In the case of the MPLM , confidence intervals

for dependence measures are constructed by the applying the block bootstrap to the

data, where each block consists of an entire Santa Ana season. For each bootstrapped

sample, the PL model is fit and a time series of observations are simulated from the model

using the estimated parameters. Dependence measures are calculated for each sample

of simulated data to produce a sampling distribution from which bootstrap confidence

intervals can be calculated. Estimates are based on 1,000 bootstrap replicates. For the

MBLM , MHMS, and MGAC models, posterior predictive estimates of dependence measures

are constructed as follows: for each MCMC sample θ(m), a time series of observations

Y
(m)

1:n are simulated conditional on θ(m). The collection of dependence measures calculated

for each sample Y
(m)

1:n of draws from the posterior predictive distribution form a reference

distribution from which credible intervals can be constructed. If the empirical estimate

of some dependence summary falls within a posterior credible set, that is an indication

that the model adequately captures the particular aspect of the data that the summary

measure elucidates (Gelman et al., 1996).

First, estimates of χ1(u) for these four models are compared with the empirical estimate

(Figure 3). The credible and confidence intervals for MBLM and MPLM overlap with the

95% confidence intervals based on the empirical estimator over the range of the data. The

reported empirical confidence intervals for the conditional probability χ1(u) are the usual

confidence intervals for a proportion based on the normal approximation to the binomial

distribution (i.e. χ̂1(u)±Φ−1(1− α/2)
√
χ̂1(u)(1− χ̂1(u))/nu where nu is the number of

observations above u). The intervals for all four models decay to 0 beyond the range of the
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data. This is somewhat unexpected for MHMS, since it induces asymptotic dependence.

However this behavior may be explained by the fact that the sub-asymptotic dependence

visually appears to be weak among wind extremes, causing the model to infer a small but

non-zero value for χ1(u).

Next, we consider the behavior of the extremal index (Leadbetter et al., 1983), which

corresponds to the limiting reciprocal mean cluster size of exceedances, for increasing

thresholds. Applying the extRemes R package implementation of the runs method (Coles

et al., 1999) at lengths of 2 and 5, we estimate the extremal index on the original time

series over the 0.9 to 0.99 wind speed quantiles (Figure 4). As mentioned in Section 2,

the Warren process induces asymptotic independence among extremes, and as expected,

for high quantiles the credible interval under this model for the extremal index includes

1, corresponding to no clustering. While all four models cover roughly the same region at

the upper bound of the empirical distribution, the MBLM and MPLM models appear to

capture the trajectory of the empirical extremal index at sub-asymptotic levels, whereas

the MHMS and MGAC models slightly overshoot the empirical estimates of the extremal

index.

[Figure 4 about here.]

Sustained high-speed winds over several days pose a greater risk for spreading fires

quickly. Figure 5 displays the empirical and model 95% credible intervals for successive

multi-day exceedances of a high threshold inferred by the MBLM . The probability of

extreme wind for more than three days appears to be negligible at all high thresholds.

The probabilities for 2 and 3 day exceedances also decay relatively quickly for increasing

thresholds, but the probability of multi-day exceedances at sub-asymptotic levels may

be of interest for developing fire suppression strategies or fire safety regulations. The

credible intervals show good coverage of the empirical estimates for 1-3 day exceedance

probabilities.

17

This article is protected by copyright. All rights reserved.



Environmetrics G. Bopp and B. Shaby

[Figure 5 about here.]

In addition to graphical assessments, we also compute two numerical model criteria, the

Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) and Log Pseudo-Marginal

Likelihood (LPML) (Gelfand and Dey, 1994). Both are calculated for the three Bayesian

models. Lower values of DIC and higher values of LPML correspond to better models.

MBLM shows the best fit in terms of both model fit criteria, followed by MGAC (Table 3).

[Table 3 about here.]

4. DISCUSSION

Understanding the marginal and dependence characteristics among temporal extremes is

often central to the design of infrastructure and regulations. In this paper we present a

Bayesian hierarchical model for temporal dependence among extremes that incorporates

both model uncertainty as well as variability in the data generating process. The model

is constructed using a Gamma mixture representation of the GPD. While it induces

asymptotic independence among extremes, a broad class of dependence types are possible

at sub-asymptotic levels. Marginal transformations make it possible to model both

light and heavy tailed data and to further model marginal parameters as functions of

covariates. This model does not, however, allow for a smooth transition between asymptotic

independence and dependence cases. It may be possible to extend this model to the spatial

setting by replacing the latent Gamma process with a Gamma random field (Wolpert

and Ickstadt, 1998). However, considering that the latent process mixes relatively slowly

when considering only a single, temporal dimension, such a model may be difficult to fit

when extended to higher order, spatial dimensions. Although the computational burden

associated with fitting the Bayesian model is much greater than that of the PL model,

a simulation study shows similar estimation performance between the two models, with
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slightly better calibrated uncertainty intervals for the Bayesian model. We apply the

Bayesian and PL models to a dataset of daily maximum wind gusts in Southern California

during the Santa Ana season. The fitted model quantiles and dependence characteristics

appear to agree well with the empirical data. Fits show a rapidly decaying probability of

consecutive days of extreme winds for increasing thresholds.
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APPENDIX

A. INTERVAL CENSORED PAIRWISE LIKELIHOOD DENSITIES

In this section we derive the form of the bivariate densities for the interval censored

PL model. Since we have fixed σ = ξ = 1 in the Warren process, the univariate Laplace

transform for Λt is

LP (1)(s) = 1/(1 + s)

and the bivariate Laplace transform of Λt and Λt+∆ is

LP
(2)
∆ (s1, s2) =

1 + s2ρ
∆

(1 + s2)(1 + s1 + s2ρ∆)

The four cases of the pairwise joint densities are given by
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• zi = zj = 1

f(w̃i, w̃j; θ) =

∫
[exp{−λi(w−i + κ)} − exp{−λi(w+

i + κ)}]

· [exp{−λj(w−j + κ)} − exp{−λj(w+
j + κ)}]g(λi, λj; ρ)dλidλj

= LP
(2)
j−i(w

−
i + κ,w−j + κ) + LP

(2)
j−i(w

+
i + κ,w+

j + κ)

− LP (2)
j−i(w

−
i + κ,w+

j + κ)− LP (2)
j−i(w

+
i + κ,w−j + κ)

• zi = 1, zj = 0

f(w̃i, w̃j; θ) =

∫
[exp{−λi(w−i + κ)} − exp{−λi(w+

i + κ)}]

· [1− exp{−λjκ}]g(λi, λj; ρ)dλidλj

= LP (1)(w−i + κ)− LP (1)(w+
i + κ)

− LP (2)
j−i(w

−
i + κ, κ) + LP

(2)
j−i(w

+
i + κ, κ)

• zi = 0, zj = 1

f(w̃i, w̃j; θ) =

∫
[1− exp{−λiκ}]·

[exp{−λj(w−j + κ)} − exp{−λj(w+
j + κ)}]g(λi, λj; ρ)dλidλj

= LP (1)(w−j + κ)− LP (1)(w+
j + κ)

− LP (2)
j−i(κ,w

−
j + κ) + LP

(2)
j−i(κ,w

+
j + κ)

• zi = 0, zj = 0

f(w̃i, w̃j; θ) =

∫
[1− exp{−λiκ}] · [1− exp{−λjκ}]

= 1− 2LP (1)(κ) + LP
(2)
j−i(κ, κ)
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B. MCMC DETAILS

We perform MCMC for the model in Section 2 using a variable-at-a-time Metropolis

algorithm to draw posterior samples. For the simulation study the parameters consist

of θ = (σ′, ξ′, ρ, κ) in addition to the latent variables Λ1:n and Π2:n, where n is the number

of observations in the time series (for the simulation study n = 1, 000, and for the data

application n = 8, 700). In the case of the data application, κ is fixed at its empirical value

to improve the mixing of the sampler. Sampling is done by initializing each parameter,

and conditionally on the remaining parameters, updating each in turn. All updates are

done using a Gaussian random walk proposal distribution. For example, to update σ′, a

candidate sample σ′(∗) ∼ N(σ′(m−1), s2
σ′), where σ′(m−1) is the value of the (m− 1)th MCMC

iteration, and s2
σ′ is the proposal variance tuning parameter. For observations (y′1:n, z1:n),

denote the observation model density for MBLM as

f(y′1:n, z1:n|σ′, ξ′, κ, λ1:n) =
n∏
t=1

[λt exp {−λtc(y′t)}
d

dy′t
c(y′t)]

zt

n∏
t=1

[exp{−κλt}]zt [1− exp{−κλt}]1−zt

the conditional density for the latent components

f(λ1:n,π2:n|ρ) = exp{−λ1}
n∏
t=2

[
1

πt

(
λt−1ρ

1− ρ

)πt
exp{−λt−1ρ

1− ρ
}][ λπtt

Γ(πt + 1)(1− ρ)πt+1
exp{ −λt

1− ρ
}]

and densities for priors given in Sections 2 and 3 as p(σ′), p(ξ′), p(ρ), and p(κ).

For the interval censored model (MBLMC) replace f(y′1:n, z1:n|σ′, ξ′, κ, λ1:n) with

f(w′1:n, z1:n|σ′, ξ′, κ, λ1:n) throughout

f(w′1:n, z1:n|σ′, ξ′, κ, λ1:n) =

n∏
t=1

[exp{−λtw−t } − exp{−λtw+
t }]zt

n∏
t=1

[exp{−κλt}]zt [1− exp{−κλt}]1−zt

23

This article is protected by copyright. All rights reserved.



Environmetrics G. Bopp and B. Shaby

Denoting the sample from the r − 1 iteration by θ(r−1), the acceptance probability for the

candidate σ′(∗) is min(R, 1) at the mth iteration for acceptance ratio

R =

{
f(y′1:n, z1:n|σ′(∗), ξ′(m−1), ρ(m−1), κ(m−1),λ

(m−1)
1:n )p(σ′(∗))

f(y′1:n, z1:n|σ′(m−1), ξ′(m−1), ρ(m−1), κ(m−1),λ
(m−1)
1:n )p(σ′(m−1))

}

Similarly, the acceptance ratio for the λt update is

R =

{
f(y′1:n, z1:n|σ(m−1), ξ′(m−1), ρ(m−1), κ(m−1),λ

(m−1)
−t λ

(∗)
t )f(λ

(m−1)
−t λ

(∗)
t ,π

(m−1)
2:n |ρ(m−1)))

f(y′1:n, z1:n|σ′(m−1), ξ′(m−1), ρ(m−1), κ(m−1),λ
(m−1)
1:n )f(λ

(m−1)
1:n ,π

(m−1)
2:n |ρ(m−1))

}

All other parameter and latent variable updates are analogous. During the burn-in

period, the proposal variances for each candidate distribution is adaptively tuned to give

acceptance rates near 0.4. After the burn-in period, the candidate proposal variances are

fixed, to satisfy the necessary mixing conditions of a stationary Markov chain. Each chain

in the simulation study is run until all parameters achieve an effective sample size (ESS)

of 100, after thinning by a factor of 100 and discarding the first 10,000 samples. The

Bayesian model parameter estimates reported in Table 2 are based on 2,000,000 MCMC

iterations, thinned by a factor of 100, after discarding the first 20,000 burn-in samples.

The ESS and effective samples/sec (ES/sec) are reported in the supplementary material.

The main bottleneck is performing inference on the dependence parameter, ρ, which is

slow to mix since it is informed indirectly through the {λt, t ≥ 1} process. When a smaller

proportion of observations are threshold exceedances, ρ mixes more slowly. Trace and

autocorrelation plots are used to monitor convergence. All computing was done using R

(https://www.R-project.org/).
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FIGURES

Figure 1. Left: Subset of daily maximum wind gusts from October, 2008 through April, 2012. Exceedances of the threshold u = 7.5 m/sec during the

Santa Ana season are shown in black. Right: Empirical estimate and pointwise 95% CIs for χ1(u) = P (Xt+1 > u|Xt > u).
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Figure 2. Exceedances (points) of a high threshold (solid horizontal line) and posterior means of c−1(1/λt) (solid lines) with 95% point-wise credible

intervals (dashed lines) for the 2011-2012 season.
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Figure 3. Left: Q-Q plot of empirical and Bayesian latent mixture model quantiles. Right: Estimates and 95% confidence/credible intervals of χ1(u):

empirical (grey), pairwise likelihood latent mixture model (green), Bayesian latent mixture model (blue), Bayesian Gaussian ARMA copula model (purple),

and Bayesian Markov hierarchical max-stable model (brown).
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Figure 4. Estimates and 95% confidence/credible intervals of the extremal index: empirical (line), pairwise likelihood latent mixture model (green),

Bayesian latent mixture model (blue), Bayesian Gaussian ARMA copula model (purple), and Bayesian Markov hierarchical max-stable model (brown)

(Coles et al., 1999). Each are calculated for run lengths 2 (left) and 5 (right).
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Figure 5. Right: Empirical estimates (lines) and Bayesian latent mixture model 95% credible intervals (bands) of exceedance probabilities for 1 (orange),

2 (blue), and 3 (green) consecutive days.
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TABLES

σ′ ξ′ ρ κ
B PL B PL B PL B PL

Bias 0.044 0.099 0.015 −0.035 −0.065 −0.017 0.322 0.173
RMSE 0.334 0.387 0.089 0.109 0.134 0.085 1.408 1.300

Coverage 0.957 0.919 0.968 0.894 0.954 0.980 0.941 0.986
Int. Score 1.523 2.653 0.409 0.898 0.385 0.455 6.381 6.881

Table 1. Bayesian (B) 95% HPD credible intervals and PL confidence intervals are
compared based on interval coverages and interval scores, and point estimates are compared
on bias and RMSE for the MBLM and MPLM models. The better value for each criteria is

given in bold.
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σ′ ξ′ ρ
Model Est. 95% CI Est. 95% CI Est. 95% CI

MBLM

90 2.727 (2.532, 2.932) -0.144 (-0.171, -0.109) 0.717 (0.671, 0.757)
92.5 2.834 (2.612, 3.067) -0.160 (-0.188, -0.124) 0.718 (0.669, 0.761)

95 2.306 (2.081, 2.548) -0.106 (-0.153, -0.048) 0.791 (0.747, 0.828)

MPLM

90 2.735 (2.450, 3.020) -0.150 (-0.201, -0.099) 0.700 (0.602, 0.797)
92.5 2.854 (2.531, 3.176) -0.167 (-0.216, -0.118) 0.725 (0.630, 0.821)

95 2.326 (1.918, 2.734) -0.117 (-0.213, -0.022) 0.787 (0.697, 0.876)

MBLMC

90 2.324 (2.024, 2.623) -0.117 (-0.186, -0.049) 0.797 (0.732, 0.863)
92.5 2.798 (2.578, 3.031) -0.161 (-0.188, -0.126) 0.723 (0.682, 0.761)

95 2.260 (2.036, 2.496) -0.106 (-0.153, -0.046) 0.793 (0.748, 0.837)

MPLMC

90 2.726 (2.440, 3.012) -0.149 (-0.201, -0.097) 0.701 (0.604, 0.798)
92.5 2.845 (2.522, 3.168) -0.166 (-0.217, -0.116) 0.726 (0.630, 0.821)

95 2.312 (1.900, 2.724) -0.116 (-0.214, -0.017) 0.787 (0.697, 0.876)

Table 2. Bayesian posterior means (95% HPD credible intervals), and maximum PL
estimates (95% confidence intervals) for continuous and interval censored models using

three different thresholds, the empirical percentiles 90%, 92.5%, and 95%.
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Model DIC LPML

MBLM 4480.73 −2237.05
MGAC 4493.54 −2280.61
MHMS 4567.28 −2341.83

Table 3. Two measures of model fit are estimated for the latent mixture model, Gaussian
ARMA Copula model, and Markov hierarchical max-stable model: LPML (higher indicates
better fit) and DIC (lower indicates better fit). Values of criteria indicating the best fit are

in bold. Both DIC and LPML indicate the the latent mixture model has the best fit.
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